Physics 129: Problem Set #4 Due: Fri Sept 28, 2001 at 5PM Homework Box available on 2nd Floor LeConte breezeway

Note: The first midterm will be held in class on Wed Oct 3. It will cover material from lectures through Friday Sept 28 and Problem Sets 1 through 4.

This problem set covers material from Perkins Chapter 3. You might also want to look at Griffiths Chapter 4 for another view of the same material.

1. Noether's Theorm Suppose a particle interacts according to the Hamiltonian

$$H = p^2/2m + Fz$$

Use Noether's theorm to determine which of the following are conserved quantities: p_x , p_y , p_z , p^2 , L_x , L_y , L_z , L^2 . Here p is the particle's momentum and L is its angular momentum.

- 2. For each of the following operators, specify whether the operator is a vector, pseduovector, scaler or pseudoscaler:
 - (a) \vec{S} the particle's spin
 - (b) \vec{r} the particle's position with respect to the origin
 - (c) \vec{p} the particle's momentum
 - (d) \vec{L} the particle's angular momentum
 - (e) \vec{B} the magnetic field in a region of space
 - (f) μ the moment of a particle
 - (g) $-\mu \cdot B$ the energy of a magnetic moment in a B field
 - (h) $(\vec{p}_1 \times \vec{p}_2) \cdot \vec{s}$
 - (i) $\vec{p}_1 \times \vec{p}_2 \times \vec{p}_3$

3. The Λ baryon is produced in the process

$$\pi^- + p \to \Lambda + K^0$$

This is a strong interaction (the Λ has strangeness -1 and the K^0 has strangeness +1 so strangeness is conserved). The Λ has spin $\frac{1}{2}$ so we can define an observable called the polarization $<\vec{S}\cdot\vec{n}>$, the expectation value of the component of spin in a specific direction \hat{n} . The term "production plane" defines the plane that contains the initial π momentum and the final Λ momentum (momentum conservation tells us there is no component of momentum outside this plane)

- (a) Show that the strong interactions rules out a final state Λ polarization in the production plane. Hint: use the fact that the strong interactions conserve parity.
- (b) Show that a polarization for \hat{n} out of the production plane is permitted.
- 4. Perkins problem 3.2
- 5. Perkins problem 3.3
- 6. Perkins problem 3.5